回転大質量星の重力崩壊と爆発現象 藤林 翔 (東北大)

FSFG2024, 2024/11/13, Shinshu U, Nagano

in collaboration with S. Wanajo, A. T.-L. Lok, C. Jockel, K. Kawaguchi, K. Ioka, and M. Shibata

Fate of massive stars

For single, non-rotating star...

 $M_{\rm ZAMS} \lesssim (8 - 10) M_{\odot}$

→ Degeneracy pressure support before Fe-formation

 $M_{ZAMS} \gtrsim (8 - 10) M_{\odot}$

 \rightarrow Fe-core formation \rightarrow Gravitational collapse

 $M_{\rm ZAMS} \gtrsim 130 M_{\odot}$

 $\rightarrow e^-e^+$ pair production \rightarrow Gravitational collapse

. $M_{\rm ZAMS} \gtrsim 10^4 M_{\odot}$

 \rightarrow General relativistic instability \rightarrow Gravitational collapse

Fate of massive stars

For single, non-rotating star...

 $M_{\rm ZAMS} \lesssim (8-10)M_{\odot}$

→ Degeneracy pressure support before Fe-formation

 $M_{\rm ZAMS} \gtrsim (8 - 10) M_{\odot}$

 \rightarrow Fe-core formation \rightarrow Gravitational collapse

 $M_{\rm ZAMS} \gtrsim 130 M_{\odot}$

 $\rightarrow e^-e^+$ pair production \rightarrow Gravitational collapse

. $M_{\rm ZAMS} \gtrsim 10^4 M_{\odot}$

 \rightarrow General relativistic instability \rightarrow Gravitational collapse

	 	2
 -		

Outline

✓ Collapse of rotating supermassive stars (~I0^5Msun, ~I0^3Msun)
 ✓ Collapse of rotating massive star (System~I0Msun, ejecta~Msun)

Outline

✓ Collapse of rotating supermassive stars (~I0^5Msun, ~I0^3Msun) ✓ Collapse of rotating massive star (System~IOMsun, ejecta~Msun)

Supermassive star

- . Hypothetical very massive ($\gtrsim 10^4 M_{\odot})$ star
- High-s, $P_{\rm rad}$ -dominant ($\Gamma \approx 4/3$)
- Dies likely by GR instability

$$\rho_{\rm crit} \approx 1.994 \times 10^{18} \left(\frac{0.5}{\mu}\right)^3 \left(\frac{M_{\odot}}{M}\right)^{7/2} \text{ g cm}^{-3}$$
$$\approx 4 \text{ g/cm}^3 (M/10^5 M_{\odot})^{-3.5} (\mu/0.59)^{-3}$$

(Shapiro-Teukolsky 83, Fuller+86)

Umeda+16

SMBHs in early universe

Distant (high-z) SMBH with $M \sim 10^9 M_{\odot}$ How are they formed?

Basic idea: $\dot{M} \lesssim \dot{M}_{\rm Edd} \propto M$. (Super/hyper-Eddington accretion may be possible)

Keeping a high Eddington ratio $\dot{M}/\dot{M}_{\rm Edd}$ from $10^2 M_{\odot}$ to $10^9 M_{\odot}$ may not be easy

Initial high mass of BH may make it easier!

Direct collapse scenario for SMBHs in early universe

Inayoshi+20, see also Rees 1978

Explosion of supermassive stars: thermonuclear case

Effects of rotation: bounce-induced explosion

Uchida+17

Let us revisit this scenario as the first step toward the understanding collapse of very massive stars

Method: Numerical setup

General relativistic gravity

Hydrodynamics with nuclear reaction $H \rightarrow He \rightarrow C$ (Only forward reaction) CNO cycle triple- α

Equation of state Neutrino radiation

Composite of ions(H, He, C), photons, electrons and positrons

Only for neutrinos emitted by CNO cycle ~8% of heating rate

Method: Initial supermassive star models

Marginally stable SMS with rotation.

model	$M_0~(M_\odot)$	$R_{\rm e0}~({\rm cm})$	$T_{ m kin}/ W $	$lpha_{ m c,0}$	$\gamma_{ m c,0}-4/3$	Â
H1	$2.1 imes10^5$	$1.7 imes 10^{13}$	0.002	0.992	0.0026	∞
$\mathbf{H2}$	$3.2 imes10^5$	$2.3 imes 10^{13}$	0.004	0.990	0.0021	∞
H3	$4.3 imes10^5$	$2.7 imes 10^{13}$	0.006	0.988	0.0018	∞
H4	$6.9 imes10^5$	4.4×10^{13}	0.009	0.985	0.0014	∞
Hdif1	$9.2 imes10^5$	$5.0 imes10^{13}$	0.011	0.983	0.0012	2
Hdif2	1.1×10^{6}	$5.3 imes 10^{13}$	0.013	0.981	0.0012	1.5
Hdif3	$1.9 imes10^6$	$7.4 imes10^{13}$	0.018	0.976	0.0009	1.0
He1	$5.0 imes10^4$	$4.3 imes10^{12}$	0.002	0.992	0.0023	∞
He2	$7.1 imes 10^4$	5.1×10^{12}	0.004	0.990	0.0019	∞
He3	$9.6 imes10^4$	$6.1 imes 10^{12}$	0.006	0.988	0.0016	∞
He4	$1.6 imes 10^5$	$1.0 imes 10^{13}$	0.009	0.985	0.0013	∞

Primordial composition X(H)=0.25, X(He)=0.75 Purely He star X(He) = I

Method: Initial supermassive star models

Caution: here are only the isentropic "core" of SMS

Realistic SMS may have inflated envelope

Result: Outline of evolution

Primordial composition, mass-shedding case

Collapsing motion is ~ coherent (characteristic of GR instability)

Result: Outline of evolution

5/3

3/2 Collapse proceeds 4/3 ¬ outside pair-unstable region. → GR instability

Result: Bounce-shock-induced ejecta

Density snapshots around torus formation time.

Sudden formation of centrifugally supported torus induces its bounce

Result: Properties of ejecta

- Ejecta mass ~ 1% of initial SMS mass

Result: Viscous evolution of the disk

Accretion timescale ~I0^4 s Up to ~ $10M_{\odot}/s \sim 10^{13}\dot{M}_{\rm Edd}$ (Hyper-Eddington)

Result: Viscous evolution of the disk

- Viscosity-driven ejecta (with different prescription & strength)
 - Ejecta mass can be ~3× bounce-driven ejecta
 - Velocity ~0.05 c ≈I/4×bounce-driven ejecta →effect is minor in kinetic energy

Discussion: Realistic environment

SMS core (convectively mixed, ~I0^5Msun)

SMS inflated envelope

Infalling gas cloud $(>0.1Msun/yr, >10^{5}Msun)$

Proto-galaxy halo

Only the collapse of SMS core is simulated.

- Envelope
- Atomic cooling cloud ~ SMS mass

Total ejecta mass ~ 10^5 Msun

Viscosity-driven ejecta does not contribute much to total ejecta property

Discussion: Realistic environment

SMS core (convectively mixed, ~I0^5Msun)

SMS inflated envelope

Infalling gas cloud $(>0.1Msun/yr, >10^{5}Msun)$

Proto-galaxy halo

Only the collapse of SMS core is simulated.

- Envelope
- Atomic cooling cloud ~ SMS mass

Total ejecta mass ~ 10^5 Msun

Viscosity-driven ejecta does not contribute much to total ejecta property

Discussion: Realistic environment

- The ejecta sweep up inflated envelope
 - \rightarrow break out from SMS surface
- The ejecta sweep up the infalling gas cloud
 - ~ CSM-interacting SN
 - (with $E \sim 1e55 1e56 erg, M_CSM \sim 10^{5}Msun$)

Observational feature

Jockel, SF+ in prep.

Discussion: Jet driven by BH-disk

- Value of Numerical-relativity simulations of the collapses of rotating supermassive stars
- ✓ Bounce-shock-induced ejecta up to 1% of core mass $(10^{-2}M_{core})$, $v \approx 0.2c$ (Mass is likely dominated by the swept-up cloud surrounding the star)
- ✓ Kinetic energy ~ $10^{55} 10^{56}$ erg (1
- ✓ Bright CSM-interacting SNe with duration ~10 (1+z) yr

Summary (Part I)

$$10^{-4}M_{\rm core}c^2$$

Outline

✓ Collapse of rotating supermassive stars (~10^5Msun, ~10^3Msun) Collapse of rotating massive star (System~IOMsun, ejecta~Msun)

Core-collapse supernovae

Stars with mass $\gtrsim 10 M_{\odot}$

Gravitational instability

Si O, Ne, Mg

C, 0

He

Proto-neutron star Formation Shock generation→ stall

if, e.g., the core compactness is too high.

Note: MHD process can help explosion

e.g., Obergaulinger & Aloy

 $\rightarrow 10^{-1}c$

	10^{12}	l	$t_{ m pl}$	5 =	= -	-0	.28	$8 \mathrm{s}$,		,	,	,		,			,			÷		,	Ţ	
	10^{11}		*	•	*	*	•	•	•	٠	•	•	•	•			ł	3					•	٠	k	•
$m^3)$	10 ¹⁰			•	•	•	•	•	•	•	•	•	•													í.
	109		•	•	•	•	•	•	•	•	•	,	,	•								•		•		•
$^{\rm g/c}$	108			*	•	•	•	•	•	•	•	•											÷.			1
ρ (10^{-1}			•	•	•	•		•			÷												ł.	-	
-	10°			•	•	•	Ċ	•		•		ł	1	÷												
	10^{6}			-							Ì															
	10^{5}		•	•	•	•			•	•		÷	•											÷		
	10 ¹				-	Ċ.	ļ					ļ	•	•									Ċ		2	2
	E		-	-		•	-	÷		÷	÷											•	·	·	•	-
$\langle \rangle$				Ţ	Ċ.	÷.																Ì,	Ĵ	Ċ	2	1
Me			-		-	-				÷												•	•	•	•	•
C)	100		ľ	•	-	Č	Ċ	1	ł	ć	Ċ,	1	t.			· ·		1	Ì	•	:	2	2	Ċ	2	2
$k_{ m B}T$				4	-	÷.	÷	÷		ì		÷					•		•	÷	÷		÷	,	÷	Ç,
			. *	*	1	*	1	1	1	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	_			-		1	-	1	i.	ł	÷	÷	÷				÷		ì	Č.	÷.	Ì.	Ì	Ç	Ç	
	10^{-1}					- 4	-		4	L.	4									••	<u>.</u>	•	•	<u>.</u>	لخا	<u>.</u>
	_	1.()0()		0.6	667	7		0.3	33	3	(1).(000)		0.3	333	3		0.0	66	1		1.
			x (1000 km))()											

BH-disk activities and GRB-SN

<u>Gamma-ray bursts (GRBs)</u>

BH-disk is one of the promising central engines (e.g., Woosley et al. 1993...)

Broad-lined type Ic SNe (SNe Ic-BL; Hypernovae) Long GRBs are accompanied by energetic SNe (Ic-BL)

- Explosion (kinetic) energy $E_{\rm K} = (0.8 - 4.4) \times 10^{52} \, {\rm erg}$ $M_{\rm Ni} = (0.2 - 0.5) M_{\odot}$ (Cano et al. 17) - ⁵⁶Ni mass

BH-disk activities and GRB-SN

Disk outflow (MacFadyen & Woosley 1999)

> Energy generated by viscous accretion: $\frac{GM_{\rm BH}M_{\rm disk}}{r_{\rm disk}} \approx 3 \times 10^{52} \, {\rm erg} \left(\frac{M_{\rm BH}}{10M_{\odot}}\right)$

<u>Viscosity-driven outflow from disk would naturally explain such SNe</u>

$$\left(\frac{M_{\rm disk}}{0.1M_{\odot}}\right) \left(\frac{r_{\rm disk}}{10^7 {\rm cm}}\right)^{-1}$$

Neutrino cooling vs viscous heating

MHD turbulence → Viscous angular momentum transport/heating

 $t_{\rm vis} \sim \frac{R^2}{\nu} = 1 \, {\rm s}$

$\checkmark t_{\text{weak}} \lesssim t_{\text{vis}}$ (NDAF) phase: weak/no outflow

 $\checkmark t_{\text{weak}} \gg t_{\text{vis}}$ phase: viscosity can drive outflow

Same as NS-merger remnant disk

$$\approx 1 \,\mathrm{s} \left(\frac{kT}{1 \,\mathrm{MeV}}\right)^{-5}$$

$$s \left(\frac{R}{10^{7} \text{cm}}\right) \left(\frac{c_{s}}{10^{9} \text{cm/s}}\right)^{-1} \left(\frac{\alpha}{0.03}\right)^{-1} \left(\frac{H/R}{0.3}\right)^{-1}$$

2D-axisymmetric simulation with solving

- Einstein's equation \checkmark
- Neutrino radiation transfer equation \checkmark Thorne 81, Shibata et al. 11
- Viscous hydrodynamics equation \checkmark Israel & Stuart 79, Shibata et al. 17, Shibata & Kiuchi 17 (to mimic MHD turbulence)

Nakamura & Shibata 95, Baumgarte & Shapiro 99

Progenitor: $M_{\rm ZAMS} = 35 M_{\odot}$ star

BH-disk can power the energetic explosion.

Comparison with observations

- Nucleosynthesis calculation in the ejecta $\rightarrow M_{\rm Ni} \gtrsim 0.1 M_{\odot}$

MHD models for GRB jets

Only with viscosity, jet cannot be produced.

$$L_{\rm BZ} \sim (BM\chi)^2 \sim 10^{50} {\rm erg/s} \left(\frac{\chi}{0.7}\right)^2 \left(\frac{M}{10M_{\odot}}\right)^2 \left(\frac{B}{10^{14}{\rm G}}\right)^2$$

2D-axisymmetric simulation with solving

- ✓ Einstein's equation
- \checkmark
- ✓ <u>Magneto</u>-hydrodynamics equation Shibata, SF+21

With MHD, we have Blandford-Znajek (BZ) process Blandford & Znajek (1977)

Nakamura & Shibata 95, Baumgarte & Shapiro 99

Neutrino radiation transfer equation Thorne 81, Shibata et al. 11

MHD models for GRB jets

Progenitor: $M_{\rm ZAMS} = 35 M_{\odot}$ star, Poloidal field

Shibata, SF+24

- Feedback on BH spin is numerically observed

Collapsar with MHD+dynamo

Progenitor: $M_{\rm ZAMS} = 35 M_{\odot}$ star, toroidal field

 \checkmark It can drive a jet (\leftarrow MHD model with an ideal config.) ✓ MHD+phenomenological dynamo model will come soon. ✓ No significant r-process in the ejecta

Summary (Part II)

Numerical relativity simulations of collapses of rotating massive stars

- \checkmark It can explode with E~10⁵² erg driven by disk outflow (\leftarrow viscous model)
- ✓ It can synthesize sufficient amount ($\gtrsim 0.1 M_{\odot}$) of ⁵⁶Ni (←viscous model)