輻射圧を考慮した共通外層期の 3次元流体シミュレーション

水谷 耕介(大阪大学)

共同研究者: 高棹 真介

11/13/2024 初代星・初代銀河研究会@信州大学

Introduction

There is a lot of phenomena driven by binary system.

Type Ia SN

Gamma Ray Burst

Radiation of GW

WD+Donor

NS+NS

BH+BH/BH+NS/...

Introduction

Merger timescale only by GW radiation

$$t_{\rm GW} = \frac{5}{256} \frac{c^5}{G^3 M_1 M_2 (M_1 + M_2)} a^4$$

$$= 10^{13} \left[\left(\frac{M_1}{30 M_{\odot}} \right) \left(\frac{M_2}{30 M_{\odot}} \right) \left(\frac{M_1}{30 M_{\odot}} + \frac{M_2}{30 M_{\odot}} \right) \right]^{-1} \left(\frac{a}{1 \text{ au}} \right)^4 \text{ yr}$$

→ too long to merge within Hubble time

There must be the mechanism to reduce the separation dramatically.

3 / 22

Roche-lobe overflow (RLOF)

Ivanova et al. 2020 4 / 22

<u>Single star</u>

 whose structure would not be expected from single star evolution.

envelope ejection
The initial wide binary is converted into <u>a close binary</u>.

3D simulations for Common Envelope phase

Focused on less massive stars

Focused on massive stars

Density at orbital plane Lau et al. 2022

Rasio & Livio 1996 Ohlmann et al. 2016 Sand et al. 2020 Calsan et al. 2023

Ricker & Taam 2012 laconi et al. 2019 Ondratschek et al. 2022

Ricker et al. 2019

We try to understand the CE in massive stars.

The effect of radiation in massive stars

When compared to the only adiabatic Hydro case,

Provide an additional way to transport the energy

Make the gas element "softer" $P \propto \rho^{\gamma}$ $\gamma: \frac{5}{3} (ad) \rightarrow \frac{4}{3} (rad)$

Radiation may play an important role in CE phase.

The purpose of this study

- To investigate the influence of the radiation in the Common Envelope (CE) phase
 - We are now implementing the radiative transfer using Flux-Limitted Diffusive approximation.

In ahead of this,

We perform 3D simulation of CE with radiation pressure.

3D simulation for Common Envelope phase

- Fluid eqs. with fixed gravity
- Non-inertial frame
- Assuming $T_{rad} = T_{gas}$

$$p_{\text{tot}} = p_{\text{gas}} + p_{\text{rad}} = \rho \frac{R_{\text{gas}}}{\mu} T + \frac{1}{3} a T^4$$

• $\Delta x = 0.01 R_1$ around the orbit

Stone et al. 2020 Ζ MacLeod et al. 2018 ν X <u>Companion:</u> point particle Core: point particle **Envelope:** fluid

Construction of Initial stellar structure

Calculate evolution of ZAMS using MESA Paxton et al. 2011

• Reconstruct the stellar profile by solving hydrostatic eq.

Construction of Stellar Structure

3D simulation without radiation pressure

3D simulation without radiation pressure

Snapshot at spiral-in phase at perpendicular plane

axisymmetric outflow in the perpendicular plane

Can be linked with Luminous Red Novae?

Matsumoto & Metager 2022

3D simulation with radiation pressure

3D simulation with radiation pressure

Why orbital motion is changed with p_{rad} ?

Discussion: What makes the orbit change?

With p_{rad}, the effective heat ratio is decreased.
1. The gas is more easily compressed.

$$P \propto \rho^{\gamma}$$
 $\gamma : \frac{5}{3} \text{ (ad)} \rightarrow \frac{4}{3} \text{ (rad)}$

Discussion: What makes the orbit change?

- 1. The gas is more easily compressed.
- The secondary motion can excite tidal wave.2. The density moment can be non-zero.

Discussion: What makes the orbit change?

- 1. The gas is more easily compressed.
- 2. The density moment can be non-zero.
- 3. Non-zero Q_l^m can affect orbital evolution.

Summary and future work

 We perform 3D HD simulation for CE phase Confirm orbital shrinkage due to the mass transfer
With p_{rad}, we get different result from the case without p_{rad} Radiation may have an impact on orbital evolution.

Summary and future work

- We perform 3D HD simulation for CE phase Confirm orbital shrinkage due to the mass transfer
 With p_{rad}, we get different result from the case without p_{rad} Radiation may have an impact on orbital evolution.
 - Implementation of ...

Radiative transfer (using Flux-Limitted Diffusion approximation) Initial spin of main star, Magnetic field, ...

Focus on the structure of ejecta, compare with observation

/ 22