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Introduction

There is a lot of phenomena driven by binary system.
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Introduction

B Merger timescale only by GW radiation
hatl
t 5 c> .
— a
W ™ 256 G3M;M,(M; + M,) Image credit: NASA
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— too long to merge within Hubble time

There must be the mechanism
to reduce the separation dramatically.
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Common Envelope Evolution (CEE

Initial binary star

secondary

star rejuvenated

secondary star

|
Roche-lobe . °
overflow Roche-lobe
stable ww stable “single degen erate”
progenitors

H-rich
donor

exposed |
stellar core, o
then white i
dwarf
Roche-lobe
overflow
unstable
1 Aobe unstable

overflow

ejection and
later merger

envelope

ejection
“double degenerate”
progenitor
(or “core degenerate” if

l \ l merger is prompt with the CE)

merger Common-envelope phases "
lvanova et al. 2020 3/22

o

\




Common Envelope Evolution (CEE

primary secondary
star star

ﬂ The star expand as it evolve.

Roche-lobe overflow
(RLOF)
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Common Envelope Evolution (CEE
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ﬂ unstable mass transfer

The companion star orbits
inside the envelope of the primary star.

— Common Envelope phase
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Common Envelope Evolution (CEE

Single star

. MErger . whose structure would not be
S E— expected from single star evolution.

ﬁ envelope gjection

The initial wide binary is converted
Into a close binary.
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Common Envelope Evolution (CEE
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3D simulations for Common Envelope phase
Focused on less massive stars Focused on massive stars
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We try to understand the CE in massive stars.
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The effect of radiation in massive stars

When compared to the only adiabatic Hydro case,

B Provide an additional way to transport the energy

B Make the gas element “softer”

, 5 4
P «p Vi3 (ad) — 3 (rad)

Radiation may play an important role in CE phase.
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The purpose of this study O

B To investigate the influence of the radiation l

in the Common Envelope (CE) phase

» We are now implementing the radiative transfer : :
using Flux-Limitted Diffusive approximation.

In ahead of this,

We perform 3D simulation of CE with radiation pressure.
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3D simulation for Common Envelope phase

B Code: Public MHD code, Athena++

Stone et al. 2020

Z

® Fluid egs. with fixed gravity

® Non-inertial frame ~V2-eoc et 2018 Y

® Assuming Traq = Toas 7’k

X
- _ Res 1, ‘_’

Ptot = Pgas T+ Prad =P u + §a Companion:
point particle

® Ax = 0.01 R, around the orbit Core: point particle

Envelope: fluid
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Construction of Initial stellar structure

B Calculate evolution of ZAMS using MESA paxion et al 2011

» M — 88 M@
Ricker et al. 2019 6.41 \j
O Zmetal = 10_2 Z@ 62 K_I
® to be BH (MBH ~ 30 M@) Eﬁ'o__sz::
5581 4
. P Q ::((::HEB
__ fgas 5.6{ T
B Extract the profile of g = "8/, ==
When ItS radiUS ~ 3000 R@' 4.8 _4.'6 44 42 40 38 36

l0g10 Tetf [K]
® Reconstruct the stellar profile by solving hydrostatic eq.
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Construction of Stellar Structure

entropy profile
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C/ Density enhancement in the center
107 - tNegativersiopsiih entrapy
. / — convective envelope

102 4
107 3

lnﬂg

] ] 1 ] ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
R

13 /22




3D simulation without radiation pressure

M; = 82.1 Mg
R, = 2891R
1 — 0426 © Simulation Frame
q="Y. 4] t=0.00¢t
a; = 2.20 R,
7.
> 0+ X 'g
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3D simulation without radiation pressure

Snapshot at spiral-in phase at perpendicular plane

4

axisymmetric outflow
In the perpendicular plane

Can be linked with Luminous Red Novae?
Matsumoto & Metager 2022
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3D simulation with radiation pressure

M, = 82.1 Mg
R, = 2891 R
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3D simulation with radiation pressure

Why orbital motion is changed with p,,47
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Discussion: What makes the orbit change?

B With p,.q4, the effective heat ratio is decreased.

1. The gas is more easily compressed.

, 5 4
P «p Vi3 (ad) — 3 (rad)
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D

Iscussion: What makes the orbit change?

1. The gas is more easily compressed.

B The secondary motion can excite tidal wave.
2. The density moment can be non-zero.
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Discussion: What makes the orbit change?

1. The gas is more easily compressed.

2. The density moment can be non-zero.

3. Non-zero Q;" can affect orbital evolution.
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Summary and future work

B We perform 3D HD simulation for CE phase
Confirm orbital shrinkage due to the mass transfer

B With p.,q, Wwe get different result from the case without p,44
Radiation may have an impact on orbital evolution.
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Summary and future work

B We perform 3D HD simulation for CE phase
Confirm orbital shrinkage due to the mass transfer

B With p.,q, Wwe get different result from the case without p,.4
Radiation may have an impact on orbital evolution.

B Implementation of ...
Radiative transfer (using Flux-Limitted Diffusion approximation)
Initial spin of main star, Magnetic field, ...

B Focus on the structure of ejecta, compare with observation
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