（初代星起源の）連星質量輸送に伴う輻射駆動円盤風の生成

豊内大輔

（大阪大学 宇宙進化グループ）
共同研究者
仏坂健太（RESCEU），稲吉恒平（KIAA）， Rolf Kuiper（Duisburg－Essen univ．）

初代星•初代銀河研究会2023＠北海道大学，2023／11／20－22

Masses in the Stellar Graveyard

Roche lobe overflows in PopIII binaries

- PopIII stars are promising origin of merging BBHs
\checkmark massive (e.g., Hirano+14)
\checkmark no significant mass loss (e.g., Spera+15)
\checkmark binary formation (e.g., Sugimura+20)
- Outflows during RLO shrink the binary separation.
\checkmark tight BBH formation
- Studying RLOs is also important to understand
\checkmark X-ray binaries, especially HMXBs and ULXs
$\checkmark \quad$ Thermal evolution of the early universe
\checkmark Chemical enrichment in the early universe

Key question

Orbital evolution driven by mass transfer

$$
\begin{gathered}
\frac{\dot{a}}{a}=-2 \frac{\dot{M}_{\mathrm{d}}}{M_{\mathrm{d}}}\left[1-\beta \frac{M_{\mathrm{d}}}{M_{\mathrm{a}}}-(1-\beta)\left(\gamma_{\text {loss }}+\frac{1}{2}\right) \frac{M_{\mathrm{d}}}{M}\right] . \\
\text { where } \boldsymbol{\beta} \equiv \dot{\boldsymbol{M}}_{\boldsymbol{a}} / \dot{\boldsymbol{M}}_{\boldsymbol{d}} \text { and } \gamma_{\text {loss }} \equiv \boldsymbol{l}_{\text {loss }} / \boldsymbol{l}_{\text {bin }}
\end{gathered}
$$

a: Orbital separation $\quad M_{a}, M_{d}$: Masses of the accretor and donor
$1_{\text {bin }}, 1_{\text {loss }}$: Specific angular momentum of binary and removed by outflows

Mass transfer rate \quad For $\mathrm{M}_{\mathrm{d}} \sim 10 \mathrm{M}_{\odot}, \tau_{\mathrm{KH}} \sim 10^{3} \mathrm{yr}$

$$
\dot{M}_{\mathrm{d}} \sim-\frac{M_{\mathrm{d}}}{\tau_{\mathrm{KH}}} \sim 10^{-2} \mathrm{M}_{\odot \mathrm{yr}^{-1}} \sim 10^{4} \dot{M}_{E d d}
$$

- Mass transfer rates are usually super-Eddington for stellar-mass BHs.
- How much mass and angular momentum is removed by radiation-driven winds?

Simulation code

\checkmark PLUTO 4.1 (Mignone et al. 2007)

- We improved FLD module incorporated in Kolb et al. (2013)
\checkmark Basic equations

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho v_{i}\right)=0, \\
\frac{\partial \rho v_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho v_{i} v_{j}\right)=\rho g_{i}-\frac{\partial P_{i j}}{\partial x_{j}},
\end{gathered} \begin{aligned}
& \text { Stress tensor } \\
& P_{i j}=p \delta_{i j}+P_{r, i j}-\sigma_{i j} \\
& p: \text { Gas pressure } \\
& P_{r, i j}: \text { Radiation pressure tensor } \\
& \sigma_{i j}: \text { Viscous stress tensor }
\end{aligned}
$$

Up to $O(v / c)$ terms are taken into account in the radiation energy equation.

3D \& 2D RHD simulations

- Suppose a BH+PopIII star binary undergoing stable mass transfer (Inayoshi+2017)
- $\mathrm{M}_{1}=34 \mathrm{M}_{\text {sun }}, \mathrm{M}_{2}=41 \mathrm{M}_{\text {sun }}, \mathrm{a}=36 \mathrm{R}_{\text {sun }}, \mathrm{P}=2 \pi / \Omega \sim 3$ day

Simulation results

Inward and Outward mass fluxes

Energetics of outflows

Bernoulli number
 $$
B e \equiv \frac{1}{2} v^{2}+\Phi+h
$$

$$
\dot{M}_{T}=10^{4} \dot{M}_{E d d}
$$

20 \%: Unbound outflows ($\mathrm{Be}>0$)
30% : Marginally unbound $\left(0>\mathrm{Be}>\Phi_{\mathrm{L} 2}\right)$
\checkmark leak out from L2 point \rightarrow circum-binary disk
\checkmark further accelerate by binary's torque
\checkmark possibly finally escape (Shu +79 , Pejcha+17)
50% : Bound outflows ($\mathrm{Be}<\Phi_{\mathrm{L} 2}$)
\checkmark become failed winds (e.g., Kitaki +21)
\checkmark finally accrete on the BH? or become unbound outflows?

$$
\dot{M}_{T}=10^{3} \dot{M}_{E d d}
$$

$\sim 100 \%$: Bound outflows
\checkmark Outflows cannot escape from the binary?

Spherization radius ($\mathrm{F}_{\text {vis }}=\mathrm{F}_{\text {Edd }}$)

$$
R_{\mathrm{sph}}=\frac{3}{4} \frac{\dot{M} c^{2}}{L_{\mathrm{Edd}}} r_{\mathrm{Sch}} \sim 1.1 \mathrm{R}_{\odot}\left(\frac{\dot{M} / \dot{M}_{\mathrm{Edd}}}{10^{3}}\right)\left(\frac{M_{\bullet}}{34 \mathrm{M}_{\odot}}\right)^{-1}
$$

Destination of Failed winds

β in various binary conditions

$$
\beta=\left(1+x / x_{0}\right)^{-\alpha} \quad \mathbf{x} \equiv \mathbf{R}_{\text {sph }} / \mathbf{R}_{\mathrm{L} 1}, \mathbf{x}_{0}=\mathbf{0 . 0 8 5}, \boldsymbol{\alpha}=\mathbf{0 . 6 1}
$$

Specific angular momentum (SAM) of outflows

\checkmark SAM of outflowing gas is slightly lower than that in the isotropic emission case.
$\checkmark \quad$ This would be a lower-limit because outflows can further accelerate by binary's torque.

SAM of isotropic outflows

$$
l_{z, \mathrm{iso}}=\frac{M_{*}^{2}}{M_{\mathrm{tot}}^{2}} \sqrt{G M_{\mathrm{tot}} a}
$$

Metallicity dependence

- Properties of gas accretion is not significantly different between $\mathrm{Z}=0$ and $\mathrm{Z}=\mathrm{Z}_{\odot}$ cases.
- Because the accretion disk is hotter than $2 \times 10^{5} \mathrm{~K}$.

Line-force-driven winds

$$
a_{\mathrm{rad}}=\{1+\underset{\text { Force multiplier }}{M(\xi, t)}\} \frac{\sigma_{\mathrm{e}} F_{\mathrm{X}}}{c}, \quad \xi \equiv \frac{4 \pi F_{\mathrm{X}}}{n_{\mathrm{e}}}, t \equiv \sigma_{e} n_{\mathrm{e}} c_{\mathrm{s}}\left|\frac{d v_{r}}{d r}\right|^{-1},
$$

Summary

$\checkmark \quad$ We have performed 3D \& 2D RHD simulations to study mass transfer in a close BH binary.
\checkmark Our simulations have revealed gas accretion and outflow structure from the L_{1} point $\left(\mathrm{r} \sim 10^{5} \mathrm{R}_{\mathrm{g}}\right)$ to the vicinity of the $\mathrm{BH}\left(\mathrm{r} \sim 100 \mathrm{R}_{\mathrm{g}}\right)$.
\checkmark Outflows launched from the inner disk region $\left(\mathrm{r}<10^{4} \mathrm{R}_{\odot}\right)$ are too slow to leave the Roche lobe and would fall back to the disk.
$\checkmark \quad$ When Rsph > Rdisk, strong outflows leaking from the L2 point can occur.
$\checkmark \quad$ Based on previous RHD sims. and ours, β can be approximated with

$$
\beta=\left(1+x / x_{0}\right)^{-\alpha} \quad \mathrm{x} \equiv \mathrm{R}_{\mathrm{sph}} / \mathrm{R}_{\mathrm{L} 1}, \mathrm{x}_{0}=0.085, \alpha=0.61
$$

γ is comparable to that expected in the isotropic emission case.

