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Roche lobe overflows in Poplll binaries

PopllI stars are promising origin of merging BBHs
v' massive (e.g., Hirano+14)
v no significant mass loss (e.g., Spera+15)

v binary formation (e.g., Sugimura+20)

Outflows during RLO shrink the binary separation.
v tight BBH formation

Studying RLOs is also important to understand
v X-ray binaries, especially HMXBs and ULXs
v' Thermal evolution of the early universe

v" Chemical enrichment in the early universe
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Key question

Orbital evolution driven by mass transfer

My 1) My
1 _ 1 _ 0SS ~ 1 . I
Md[ ﬁ B ﬁ)(% i 2) M]

sm.

where B = Ma/Md and Yioss = lioss/lpin

a: Orbital separation M,, M4: Masses of the accretor and donor

lpin, Lioss: Specific angular momentum of binary and removed by outflows

Mass transfer rate For My~ 10 Mg, Ty ~ 103 yr
: Mgy :
Mg~—=~10"2Mgyr ! ~10* M
S Edd

Mass transfer rates are usually super-Eddington for stellar-mass BHs.

How much mass and angular momentum is removed by radiation-driven winds?




v' PLUTO 4.1 (Mignone et al. 2007)

Simulation code

- We improved FLD module incorporated in Kolb et al. (2013)

v Basic equations

ap

0

r,ij

aPij
Oxj

0F;

Stress tensor
Pij = poij+Pr ij—0ij

p : Gas pressure
P

Lij

0jj : Viscous stress tensor

: Radiation pressure tensor

o+ o (pvi) =0,
ag:i + a%j(pv,-Vj) = pP&i —
aaf * aii (Evi+vjPij+ Fi) = pvigi +p Ligr,
agzad __ ﬁixi (Eraqvi) — %’P

— — +Kkpc (aT4 - Erad) .
0x;

Up to O(v/c) terms are taken into account in the radiation energy equation.




3D & 2D RHD simulations

* Suppose a BH+PopllI star binary undergoing stable mass transfer (Inayoshi+2017)
* M, =34 Mgn, My, =41 Mg, a=36 Ry, P=21/Q ~ 3 day

51073 M,,,/yr
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Pseudocolor
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1.000e+21
1.778e+18
3.162e+15

5.623e+12

- 1.000e+10
Max: 1.512e+19
Min: 1.529

Pseudocolor
Var: qus
000e+08

- 5.623e406

I 3.162e+05

- 1.778e+04

., 1000

Max: 1.000e+10
Min: 1.5966+04

Simulation results
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Inward and Outward mass fluxes
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Energetics of outflows

My =10*M
Bernoulli number T Edd
20 %: Unbound outflows (Be > 0)
— 2,2
Be = 2 v +@+h 30 %: Marginally unbound (0 > Be > ®y,)
v' leak out from L2 point = circum-binary disk

v’ further accelerate by binary’s torque
v’ possibly finally escape (Shu+79, Pejcha+17)

50 %: Bound outflows (Be < ®y,)
v become failed winds (e.g., Kitaki+21)

v’ finally accrete on the BH? or become unbound
outflows?
3
10° Mgaa —@— M371
—— M4Z1 7. — 3
My =10°> M4

1073 f t :
Be < ®d(Ly)  P(Lg) <Be<0 Be > 0 ~ 100 %: Bound outflows

v Outflows cannot escape from the binary?
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Destination of Failed winds
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P in various binary conditions
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Specific angular momentum (SAM) of outflows

v" SAM of outflowing gas is slightly lower than that in the isotropic emission case.

v" This would be a lower-limit because outflows can further accelerate by binary’s torque.

1O @erss SAM of isotropic outflows
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Metallicity dependence

Properties of gas accretion is not significantly

different between Z = 0 and Z = Z, cases.

Because the accretion disk is hotter than 2 x 10° K.
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Line-force-driven winds

Arad = {1 - M(€7 t)}
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Force multiplier
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LF is negligible.




Summary

We have performed 3D & 2D RHD simulations to study mass transfer in a close
BH binary.

Our simulations have revealed gas accretion and outflow structure from the L,
point (r ~ 10° R,) to the vicinity of the BH (r ~ 100 Ry).

Outflows launched from the inner disk region (r < 10* Rs) are too slow to leave
the Roche lobe and would fall back to the disk.

When Rsph > Rdisk, strong outflows leaking from the L2 point can occur.

Based on previous RHD sims. and ours, 3 can be approximated with

/B — (1 + x/:L‘O)—a XERsph/RLla X0:0.085, a=0.61

v 1s comparable to that expected in the isotropic emission case.



