

fiducial t = 466.11 Myr z = 10.38

 10^{36}

 $\Sigma_{\rm gas} \left[{\rm M}_{\odot} \, {\rm pc}^{-2} \right]$

 10^{3}

100 pc

初代銀河形成における EUV/FUVフィードバック の役割 杉村和幸(北大)

共同研究者: M. Ricotti (Maryland) F. A. B. Garcia (Columbia) J. Park (Maryland) 10^{34} 10^{35} 10^{35} 10^{35} 矢島秀伸(筑波大) 10^{2}

Introduction

Methods

Results

Conclusion

INTRODUCTION

宇宙初期の矮小銀河に限定することで、高い解像 度・詳細な物理モデルのシミュレーションを実現 →しかも観測と比較可能な時代

"bottom-up" simulations of first galaxies

Our goal is to reveal the formation of first galaxies from a theoretical side by combining simulations that follow the large-scale physical law and knowledge of small-scale processes

Various physical processes that affect the formation of the first galaxies

To understand first galaxy formation is to understand how the gas in a halo is converted to stars through various physical processes

EUV/FUV feedback

 $T\sim$ a few x 10⁴ K

EUV feedback: H + EUV \rightarrow H⁺ + e⁻

Ionization bubble

blows away surrounding gas by

pressure of hot ionization bubble

FUV feedback: $H_2 + FUV \rightarrow 2H$

no coolant at T < 10⁴ K

Photodissociation region

Н

FUV

- suppress star formation by dissociation of coolant (H_2)
- sometimes leads to supermassive star formation

Purpose of this work

To understand the role of FUV/EUV feedback in the first galaxy formation using cosmological radiation hydrodynamics simulations

METHODS

see also Garcia, Ricotti, Sugimura, Park (2023)
Simulation methods

Zoom-in simulations of a single galaxy ($M_{halo} = 10^8 M_{sun}$ at z = 10)

Code	RAMSES-RT (Teyssier 2002, Rosdahl & Teyssier 2015)	Cosmological AMR (M)HD, Moment method RT (M1 closure), DM particle, sink (BH) particle, stellar radiation, SN feedback, non-equil. chemistry/cooling/heating	
Initial Conditions	MUSIC (Hahn & Abel 2011)	Generate initial condition at z = 127 w/ zoom technique	
Last cosmic time	500 Myr	same as z ~ 10	
Box Size	0.3 h ⁻¹ cMpc (zoom-region)	35 h ⁻¹ cMpc (base-box)	
DM Mass	800 M_{\odot} resolution (zoom-region)	$10^{11}M_{\odot}$ (base-box)	
Star Mass	$100~\text{M}_\odot$ resolution	Internal Salpeter-like IMF	
Refinement	1) $N_J = 8$ ($\Delta x > 1$ pc), 4 ($\Delta x < 1$ pc) 2) Lagrangian for DM and stars	1) at least N _J cells per Jeans length 2) to keep star clusters bound	
Spatial Resolution	Δxmin = 0.15 pc * [(1 + z) / 10]	AMR level = 25	
Star Formation	$n_{SF} = \frac{5 \times 10^4 \text{ cm}^{-3} * [(1+z)/10]^2}{* (T/100 \text{ K})}$	Binary Pop III (M_{tot} =120 M_{sun}) for Z < 10 ⁻⁵ Z _{sun} Pop II cluster ($M_{cl} \sim 10^{2-5} M_{sun}$) for Z > 10 ⁻⁵ Z _{sun}	

We perform runs with different feedback models to clarify the role of EUV/FUV radiative feedback separately

Run				
	FUV	EUV	FUV	EUV
fiducial	0	0	0	0
p2noFUV	0	0	-	0
p2noEUV	0	0	0	-
noFUV	-	0	-	0
noEUV	0	-	0	-

RESULTS

First galaxy formation in fiducial run

fiducial t = 346.16 Myr z = 12.86

$$100 \, \mathrm{pc}$$

Star-formation history in the zoom-in region of fiducial run

Pop III-to-Pop II transition \boldsymbol{z} 14 star-formation history in the 30 2016 1211 10 $\begin{bmatrix} 10^{6} \\ 10^{5} \\ M \end{bmatrix} \begin{bmatrix} 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{2} \end{bmatrix} \begin{bmatrix} 10^{6} \\ 0 \\ 0 \\ 0 \end{bmatrix}$ 300 ckpc zoom-in region Pop III Pop II first Pop III star appears at z=26 10^{2} Pop III-to-Pop II transition $\begin{bmatrix} 10^{-1} \\ M \end{bmatrix} \begin{bmatrix} 10^{-2} \\ M \end{bmatrix} \begin{bmatrix} 0^{-3} \\ 10^{-3} \\ 10^{-4} \\ 10^{-5} \end{bmatrix}$ (3Myr average) occurs at z=13 Pop II stars form through several burst events -5 10^{-10} 200 400300 500 100 $t_{\rm univ}$ [Myr]

 Pop III stars continue to form until z~10

burst Pop II star formation ¹³

Internal state of the galaxy during its formation

- star-formation history in the virial radius of main merger tree (using Rockstar halo finder; Berhoozi+ 2013)
- Pop III-remnant BHs (~100 M_{sun}) hardly grow by gas accretion (BHL accretion assumed)
- feedback sometimes evacuates gas from the halo

Model dependence of SFH

Gas distribution during star formation with and without FUV feedback

- large star-forming cloud collapses as a whole with weak fragmentation (similar to SMS formation site)
- star formation proceeds in small fragmented star-forming clouds

Stellar clusters w/ and w/o FUV feedback

- Fewer but bigger clusters formed in the run w/ FUV
- Metallicity generally follow the average gas metallicity inside virial radius with ~0.5 dex scatter
- Metallicity evolution can be reproduced by a simple model based on M_{*,form} and M_{halo}

$$Z_{\rm PopII} [Z_{\odot}] = 0.47 \times \left(\frac{M_{\rm PopII, form}}{M_{\rm vir}}\right)$$
$$Z_{\rm PopIII} [Z_{\odot}] = 7.0 \times \left(\frac{M_{\rm PopIII, form}}{M_{\rm vir}}\right)$$

(depends on underlying IMF, metal escape fraction and gas mass fraction) 17

Snapshot of a star forming cloud in the run with FUV

18

Phase diagram of a star forming cloud in the run with FUV

EUV pre-SN feedback changes the fate of the first SN bubble

EUV also enhances the efficiency of Pop II SN feedback \rightarrow higher SFE

21

Model dependence of SFH (again)

CONCLUSION

- 現象論的なサブグリッドモデルを用いない、ボトムアップ的な初代銀河形成シミュレーションに取り組んでいる
- 本研究では初代銀河形成においてEUV/FUVのそれぞれのフィードバックがどのような役割を果たすかを調べた
- FUVフィードバックはガス分裂を抑制しPop II形成を間欠的にする
 - 星形成効率(最終的な星質量)はむしろ上昇(ポジティブフィードバック)
- EUVフィードバックは超新星の前に周囲の密度を下げ、超新星フィードバックの 影響を増加させる
 - Pop III 超新星の後、すぐにガスがフォールバックしてPop IIを作るのを抑制
 - Pop II超新星の影響を強めて星形成効率を低下させる
- 今後は、Pop III形成モデルの改良(平野くんformula x 連星)、star-by-star Pop II形成モデルの実装、BHフィードバック入り計算などを進める予定