初代星形成における円盤分裂 に対する乱流磁場の影響

Kenji Eric Sadanari (Tohoku U.)

Kazuyuki Omukai(Tohoku U.) Kazuyuki Sugimura(Hokkaido U.) Tomoaki Matsumoto(Hosei U.) Kengo Tomida(Tohoku U.)

star formation process

How does this change in the presence of B-fields ?

seed magnetic field in the early universe

Observational constrains

Gamma rays observation of blazars

 $B > 10^{-20} G$ @ intergalactic voids (Takahashi+2012)

✓ Theory

Cosmological process

- during electroweak & QCD phase transition:
 - $B \sim 10^{-65} 10^{-9} \text{ G} \rightarrow \text{depend on the model}$
- Second order fluctuations during recombination era(Saga+2015)

 $B \sim 10^{-24} \text{ G} @ \text{ few Mpc}$

Astronomical process

Biermann battery mechanism

- Galaxy formation (Kulsrud+1997)
- Reionization (Gnedin+2005)
- SNe explosion (Hanayama+2005)
- Virialization shock during minihalo formation(Xu+2008)
- Radiation forces (Langer+2003; Doi&Susa2011)
- Streaming of cosmic rays (Ohira 2021)
- $\rightarrow B \sim 10^{-21} 10^{-16} \; G$ at scale of astronomical object

There is definitely a B-field in the early universe, but its strength is too weak.

amplification of seed B-field by dynamo

Turbulence in the minihalo can rapidly amplify seed B-fields through dynamo effects.

- ✓ small scale dynamo ($E_{mag} \ll E_{turb}$)
 - ① kinematic stage
 - $B \propto \exp(t/t_{\rm eddy})$
 - \rightarrow small scale B-field is dominant
 - 2 non-linear stage
 - $B \propto t$ <--- comp. growth becomes dominant
 - \rightarrow large scale B-fields become dominant

magnetic effects on star formation

Magnetic fields reduce the disk size and binary separation, suppress fragmentation and decrease the star formation efficiency.

angular momentum (AM).

& delay collapse.

turbulent magnetic fields in first star formation

Machida+2008

turbulent B-field

(e.g., first star forming region)

& number/spatial distribution of protostars.

set-up of MHD simulation

[simulation code]

AMR(Adaptive Mesh Refinement) code

- ideal MHD + self gravity
- energy eq. w/ cooling/heating

$$\frac{\partial e}{\partial t} + \nabla \cdot \left[\left(e + p + \frac{1}{8\pi} |\vec{B}|^2 \right) \vec{v} - \frac{1}{4\pi} \vec{B} \left(v \cdot \vec{B} \right) \right] + \rho \vec{v} \cdot \nabla \phi$$

• 14 chemical reactions among 6 species : H, H₂, e, H⁺, H⁻, H₂⁺

resolution: cell size < Jeans length/64

[initial set up]

Bonnor-Ebert sphere (= gas cloud core) (central density $n_{c,init} = 10^3 \text{ cm}^{-3}$)

• rigid rotation

$$E_{\rm rot} / |E_{\rm grav}| = 0.01$$

• turbulent velocity ($V_{\rm turb} \propto k^{-1/2}$)

 $E_{\text{turb}} / |E_{\text{grav}}| = 0.03$

uniform magnetic field

 $E_{\text{mag}} / |E_{\text{grav}}| = 0, \ 2 \times 10^{-7}, \ 2 \times 10^{-5}, \ 6 \times 10^{-4}$

(Matsumoto 2007, Sugimura+2020)

$$\nabla \phi + \Lambda = 0$$

radiation cooling

(H2, HD lines, gas continuum) chemical cooling/heating

overview of our simulations

overview of our simulations

turbulent B-fields @ protostar formation

overview of accretion phase

orange circle indicates the disk region : $V_{rot}(R) > 3V_{rad}(R)$

multiplicity

 \rightarrow Regardless of B-field strength within the disk, multiple systems are formed.

time evolution of the disk size and mass.

 \rightarrow almost the same in all different B-field cases.

size of spiral arms(SAs) & gas distribution

- \rightarrow SAs in Binit = 5x10^-7 G case are shorter than other weaker case.
- \rightarrow The gas within the disk concentrate to the center.

B-field effects : magnetic pressure

from the gravitational instability.

B-field effects : magnetic torques

B-field effects : MHD outflow

magnetic pressure wind

Due to being overpowered by the ram pressure of gas accretion, duration of winds are short.

The impact of gas ejection and angular momentum transport is minor.

magnetic effects on disc fragmentation

- Magnetic pressure & AM transport by magnetic torques stabilize circum-stellar/binary disks.
 - → The cumulative number of fragments decreases with stronger B-field in the disc.
- However, most of the protostars merger each other.
 - \rightarrow we can see clear reduction of number of protostar only in the case of Binit = 5x10^-7 G.

Summary

- We have performed 3D ideal MHD simulations of first star formation from collapse phase to accretion phase.
- \rightarrow investigating whether turbulent B-fields affect the disk fragmentation.

[our findings]

magnetic amplification by rotational motion is slow due to the magnetic reconnection diffusion.

magnetic pressure

stabilizes the circum-stellar/binay disk.

magnetic torques

transport the angular momentum in radial direction, leading to stabilize the disk.

MHD outflow

Magnetic pressure winds are occasionally driven, but their impact on stellar mass is minor.

[conclusion]

If B-fields can be amplified to about equipartition fields during collapse phase, the magnetic effects can reduce the number of protostar.

