Cosmic Reionization proved by JWST observations of high-z galaxies

JWSTによる遠方銀河観測で探る宇宙再電離

中根美七海(東京大学宇宙線研究所)

共同研究者:大内正己(東京大学/国立天文台),中島王彦(国立天文台), 播金優一,小野宜昭,Yechi Zhang,磯部優樹,Yi Xu,梅田滉也(東京大学)

初代星·初代銀河研究会 2023/11/20-22@北海道大学

Cosmic Reionization

Robertson+10

3. Physical process

Cosmic Reionization History

$Ly \alpha$ Emission

- Ly α emission line ($\lambda_{rest} = 1216$ Å) is strongly attenuated by HI in the IGM
- Ly α EW is a good probe of $x_{\rm HI}$

$Ly \alpha$ Equivalent Width

- \bullet Ly α fraction: the fraction of LAEs among LBGs
- Using full distribution of EW (Mason+18)

JWST Data

- JWST/NIRSpec observations
- ERS (GLASS, CEERS), GO, DDT, and GTO (JADES) programs
- High-resolution grating (R~2700), Medium-resolution grating (R~1000), and Prism (R~100) spectra

Sample Galaxies

- 54 galaxies at 6.6<z<13.2 with -22.5< $M_{UV}{<}{\text{-}17.0}$
- Include GNz-11 at z~10.6 (Bunker+23)
- Redshifts are spectroscopically confirmed
- Fall on star-formation main sequence at z~6

Spectral Fitting

- Continuum + Ly α line + IGM absorption(Inoue+14)
- Convolved with LSF(Isobe+23)
- \bullet Ly α velocity offset, line width, and EW measurements

$Ly \alpha$ detections

• 15/54 galaxies with Ly α detections (S/N>3)

ID	$z_{ m sys}$	$z_{{ m Ly}lpha}$	$\mathrm{EW}_{0,\mathrm{Ly}lpha}$	$\Delta v_{{ m Ly}lpha}$
			[Å]	$[{ m km~s^{-1}}]$
(1)	(2)	(3)	(4)	(8)
$\rm JADES_00016625$	6.631	6.637	26.6 ± 21.3	234 ± 31
JADES_00003334	6.706	6.712	16.5 ± 12.6	229 ± 113
JADES_00004297	6.713	6.718	36.6 ± 14.9	188 ± 54
$CEERS_00044$	7.104	_	62.6 ± 58.4	_
$CEERS_00439$	7.179	_	33.8 ± 23.9	_
JADES_10013682	7.275	7.281	31.5 ± 10.0	215 ± 23
$GLASS_10021$	7.286	7.292	3.2 ± 2.9	203 ± 32
$CEERS_00698$	7.471	7.480	5.4 ± 3.0	334 ± 64
$CEERS_80239$	7.487	_	105.3 ± 72.1	_
$CEERS_00686$	7.752	_	20.4 ± 19.9	_
$CEERS_01027$	7.821	7.828	17.9 ± 7.5	232 ± 56
$GLASS_{10000}$	7.881	7.890	7.5 ± 3.8	308 ± 102
JADES_00021842	7.98	7.985	18.8 ± 14.6	168 ± 91
$CEERS_01019$	8.679	8.686	3.4 ± 3.3	231 ± 54
GNz-11	10.603	10.624	18.0 ± 2.0	555 ± 32

Evolution of Ly α Properties

No evolution of velocity offset and FWHM

Composite Spectra

Stacking spectra normalized with continuum fluxes

Clear evolution of peak flux
 →EW evolution

Evolution of Ly α EW

- Measurements of EW and 3 σ upper limits
- Evolution of Ly α EW $\rightarrow x_{\rm HI}$ evolution

EW Distribution Model

- Comparing EW measurements with models
- Galactic wind model + reionization simulation (Dijkstra+11)
- Similar M_{UV} distribution at z~7, 8, and 9-13

x_{HI} Estimates

• Bayesian inference based on Mason+18

 $p(x_{\rm HI}|{\rm EW}) \propto \prod_i p({\rm EW}_i|x_{\rm HI}) p(x_{\rm HI})$

EW distribution model

Uniform prior with $0 < x_{\rm HI} < 1$

Cosmic Reionization History

- Late or Medium late scenario
- Reionization source:
 objects hosted by moderately
 massive halos

Summary

- Spectral analysis of 54 galaxies at $z\sim7-13$
- Clear signature of $\underline{Ly \alpha} EW$ evolution
- $x_{\rm HI}$ estimates consistent with <u>late reionization history</u>
- →Reionization source: objects hosted by moderately massive halos

Appendix

EW Distribution Model

EW distribution model (Dijkstra+11)

<u>Galactic outflow model</u>: intrinsic Ly α line scattered through the outflow <u>Reionization seminumeric simulation</u>: IGM opacity

 $T_{IGM}(x_{HI})$: fraction of Ly α photons transmitted through the IGM

$$p_{z=6}(EW) \propto \exp(-EW/EW_c)$$
$$p(EW|x_{\rm HI}) = N \int_0^1 dT_{\rm IGM} P(T_{\rm IGM}) p_{z=6}(EW/T_{\rm IGM})$$

EW Distribution Model

EW distribution model (Dijkstra+11)

Galactic outflow model + Seminumerical simulation

Bayesian Inference

Bayesian Inference (Mason+18)

• For galaxies with Ly α detections:

$$p(\mathrm{EW}_{i}|x_{\mathrm{HI}}) = \int_{0}^{\infty} d\mathrm{EW} \; \frac{e^{-\frac{(\mathrm{EW}-\mathrm{EW}_{i})^{2}}{2\sigma_{i}^{2}}}}{\sqrt{2\pi}\sigma_{i}} p(\mathrm{EW}|x_{\mathrm{HI}})$$

• For galaxies with no Ly α detections:

$$p(\mathrm{EW}_{i} < \mathrm{EW}_{\mathrm{lim}} | x_{\mathrm{HI}}) = \int_{-\infty}^{\mathrm{EW}_{\mathrm{lim}}} d\mathrm{EW} \ p(\mathrm{EW}_{i} | x_{\mathrm{HI}})$$
$$= \int_{0}^{\infty} d\mathrm{EW} \ \frac{1}{2} \mathrm{erfc} \left(\frac{\mathrm{EW} - \mathrm{EW}_{\mathrm{lim}}}{\sqrt{2}\sigma_{i}} \right) p(\mathrm{EW} | x_{\mathrm{HI}})$$