炭素「余熱」効果が対不安定型超新星 に与える影響

初代星・初代銀河研究会2023 @北海道大学札幌キャンパス 2023/11/20

川下大響 東京大学大学院総合文化研究科(東大駒場)M2

共同研究者

澤田涼(東大駒場)

諏訪雄大(東大駒場・京大基研)

谷川衝(東大駒場)

守屋尭(国立天文台・Monash Univ.)

冨永望(国立天文台・甲南大)

素粒子・宇宙論	<u>」マテリアル強相関物性</u>
鈴木 久男 教授 2-11-08 3438 hsuzuki*particle.sci.hokudai.ac.jp	網塚 浩 教授 5-01-32 3484 amiami*phys.sci.hokudai.ac.jp
小林 達夫 教授 2-11-12 3539 kobayashi*particle.sci.hokudai.ac.jp	柳澤 達也 教授 5-01-30 4422 tatsuya * phys.sci.hokudai.ac.jp
瀬戸 治 准教授 2-11-09 2685 seto*oia.hokudai.ac.jp	武貞 正樹 准教授 5-02-18 2680 mt * phys.sci.hokudai.ac.jp
末廣 一彦 講師 2-11-11 2686 suehiro*particle.sci.hokudai.ac.jp	日高 宏之 助教 2-01-10 3500 hidaka*phys.sci.hokudai.ac.jp
原子核理論	固体電子物性
野村 昂亮 准教授 2-10-09 2684 nomura*nucl.sci.hokudai.ac.jp	小田 研 教授 5-02-17 3575 moda*sci.hokudai.ac.jp
	<u>吉田 紘行</u> 教授 5-02-19 2682 hyoshida * sci.hokudai.ac.jp
<u>理論宇宙物理学</u>	松山 秀生 准教授 5-02-20 4416 matsu * phys.sci.hokudai.ac.jp
岡本 崇 教授 2-09-14 2893 okamoto * astro1.sci.hokudai.ac.jp	
	低次元マテリアル物性
観測天文学	·····································
<u>徂徠 和夫</u> 教授 2-03-16 4435 sorai*phys.sci.hokudai.ac.jp	松永 悟明 准教授 5-01-27 4427 mat * phys.sci.hokudai.ac.jp
	井原 慶彦 講師 5-01-28 4426 yihara*phys.sci.hokudai.ac.jp
<u>統計物理学</u>	<u>延兼 啓純</u> 助教 5-01-24 4431 nobukane * sci.hokudai.ac.jp
根本 幸児 教授 2-10-13 3441 nemoto * phys.sci.hokudai.ac.jp	福岡 脩平 助教 5-01-20 4424 fukuoka * phys.sci.hokudai.ac.jp
<u>北 孝文</u> 教授 2-11-14 2687 kita * phys.sci.hokudai.ac.jp	
速水 醫 准教授 2-11-13 2694 havamix physisci bokudai ac in	凝縮系ダイナミクス
远示 頁 准执政 2-11-13 2054 hdydin * phys.sei.nokuddi.dc.jp	三品 具文 准教授 5-01-31 3551 mis*phys.sci.hokudai.ac.jp
奥田 浩司 助教 2-10-15 3442 okuda * phys.sci.hokudai.ac.jp	山本 夕可 助教 5-01-22 4428 sekika * phys.sci.hokudai.ac.jp
数理物理学	<u>量子物性物理学(電子研)</u>
山本 昌司 教授 2-11-15 2681 vamamoto * nhvs sci hokudai ac in	石橋 晃 教授 03-101 9423 i-akira * es.hokudai.ac.jp
大原 潤 講師 2-03-15 3668 ohara * phys.sci.hokudai.ac.jp	<u>近藤 憲治</u> 准教授 03-102-1 9424 kkondo*es.hokudai.ac.jp
	科学基礎論
	松王 政浩 教授 5-02-15 4420 matsuou*sci.hokudai.ac.jp
	<u>科学技術コミュニケーション</u>
	川本 思心 准教授 5-02-16 2682 ssn * sci.hokudai.ac.jp
	医理工学院
	合川 正幸 教授 本館N211 3723 aikawa*sci.hokudai.ac.jp

ホームページ作りました

h-Kawashimo.net

Home Profile Works Debate Link

これは川下大響のホームページです。天体物理の大学院生をしています。

This is Hiroki Kawashimo's Homepage. HK is a graduate school student researching in Astrophysics.

連絡先 Contact : h-kawashimo(-at-)g.ecc.u-tokyo.ac.jp

お知らせ

2023/09/21 川下は11月20日から札幌で開催される初代星・初代銀河研究会2023に参加します。

HK will attend to 初代星・初代銀河研究会2023 in Sapporo.

文出しました

https://arxiv.org/abs/2306.01682

MNRAS 000, 1-16 (2023)

Preprint 6 June 2023

Compiled using MNRAS LATEX style file v3.0

Impacts of the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate on ${}^{56}Ni$ nucleosynthesis in pair-instability supernovae

Hiroki Kawashimo,¹* Ryo Sawada,¹ Yudai Suwa^{1,2} Takashi J. Moriya,^{3,4,5} Ataru Tanikawa¹ and Nozomu Tominaga^{3,4,6,7}

¹Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan ²Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ³National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan ⁴Astronomical Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

⁵School of Physics and Astronomy, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia

⁶Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan

⁷Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

202 Jun S

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

SR Nuclear reactions are key to our understanding of stellar evolution, particularly the ${}^{12}C(\alpha, \gamma){}^{16}O$ rate, which is known to significantly influence the lower and upper ends of the black hole (BH) mass distribution due to pair-instability supernovae astro-ph (PISNe). However, these reaction rates have not been sufficiently determined. We use the MESA stellar evolution code to explore the impact of uncertainty in the ${}^{12}C(\alpha, \gamma){}^{16}O$ rate on PISN explosions, focusing on nucleosynthesis and explosion energy by considering the high resolution of the initial mass. Our findings show that the mass of synthesized radioactive nickel (⁵⁶Ni) and the explosion energy increase with ${}^{12}C(\alpha, \gamma){}^{16}O$ rate for the same initial mass, except in the high-mass edge region. With a high (about twice the STARLIB standard value) rate, the maximum amount of nickel produced falls below 70 M_{\odot} , while with a low rate (about half of the standard value) it increases up to 83.9 M_{\odot} . These results highlight that carbon burning plays a crucial role in PISNe by determining when a star initiates expansion. The initiation of expansion competes with collapse caused by helium photodisintegration, and the maximum mass that can lead to an explosion depends on the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate.

 \sim Key words: stars: massive – supernovae: general – stars: evolution – nuclear reactions, nucleosynthesis, abundances

Introduction Final fates of stars

NASA

Final fate of ZAMS 140-260 M_{\odot} Very massive star

 \rightarrow Pair-instability supernova

Complete destruction \rightarrow No compact object (remnant)

M. Renzo et al. A&A 640, A56 (2020)

R. Farmer *et al.* ApJ. 887, 53 (2019). Initial mass of helium $(M_{He}[M_{\odot}])$

Introduction PISN best candidate

SN 2018ibb

S. Schulze et al. arXiv:2305.05796 (2023).

Astronomy & Astrophysics manuscript no. paper

©ESO 2023

1100 Days in the Life of the Supernova 2018ibb the Best Pair-Instability Supernova Candidate, to date

	Steve Schulze ¹ ● Claes Fransson ² , Alexandra Kozyreva ³ ●, Ting-Wan Chen ^{4,5,6} ●, Ofer Yaron ⁷ , Anders Jerkstrand ² ●, Avishay Gal-Yam ⁷ , Jesper Sollerman ² ●, Lin Yan ⁸ , Tuomas Kangas ^{9,10} ●, Giorgos Leloudas ¹¹ ●, Conor M. B. Omand ² ●, Stephen J. Smartt ^{12,13} ●, Yi Yang (杨轶) ¹⁴ ●, Matt Nicholl ^{15,13} ●, Nikhil Sarin ^{16,1} ●, Yuhan Yao ¹⁷ ●,	
	Thomas G. Brink ¹⁴ ⁽⁶⁾ , Amir Sharon ⁷ , Andrea Rossi ¹⁸ , Ping Chen ⁷ ⁽⁶⁾ , Zhihao Chen ¹⁹ ⁽⁶⁾ , Aleksandar Cikota ²⁰ ⁽⁶⁾ ,	
	Kishalay De ^{**21} , Andrew J. Drake ¹⁷ , Alexei V. Filippenko ¹⁴ , Christoffer Fremling ⁸ , Laurane Fréour ²² , Johan P. U.	
	Fynbo ²³ ⁽ⁱⁱ⁾ , Anna Y. Q. Ho ²⁴ ⁽ⁱⁱ⁾ , Cosimo Inserra ²⁵ , Ido Irani ⁷ ⁽ⁱⁱ⁾ , Hanindyo Kuncarayakti ^{26,27} ⁽ⁱⁱ⁾ , Ragnhild Lunnan ² ⁽ⁱⁱ⁾ ,	
5	Paolo Mazzali ^{28,5} , Eran O. Ofek ⁷ , Eliana Palazzi ¹⁸ 📴, Daniel A. Perley ²⁸ 💷, Miika Pursiainen ¹¹ 😇, Barry	
V	Rothberg ^{29,30} , Luke J. Shingles ³¹ ¹⁰ , Ken Smith ¹³ , Kirsty Taggart ³² ¹⁰ , Leonardo Tartaglia ^{33,34} ¹⁰ , WeiKang Zheng ¹⁴ ,	
0	Joseph P. Anderson ^{35,36} , Letizia Cassara ³⁷ , Eric Christensen ⁴⁷ , S. George Djorgovski ¹⁷ , Lluís Galbany ^{38,39}	
7	Anamaria Gkini ² , Matthew J. Graham ¹⁷ , Mariusz Gromadzki ⁴⁰ , Steven L. Groom ⁴¹ , Daichi Hiramatsu ^{42,48} , D.	
>	Andrew Howell ^{43, 44} , Mansi M. Kasliwal ¹⁷ , Curtis McCully ⁴³ , Tomás E. Müller-Bravo ^{38, 39} , Simona Paiano ³⁷ ,	
13	Emmanouela Paraskeva ⁴⁵ , Priscila J. Pessi ² ⁽⁰⁾ , David Polishook ⁷ ⁽⁰⁾ , Arne Rau ⁶ , Mickael Rigault ⁴⁶ ⁽⁰⁾ , and Ben	
\geq	Rusholme ⁴¹ ¹	
ע	(Affiliations can be found after the references)	
TJ	Received XXX; accepted XXX	
-		
2	ABSTRACT	
_		

Stars with zero age main sequence masses between 140 and 260 M_{\odot} are thought to explode as pair-instability supernovae (PISNe). During their 1 thermonuclear runaway, PISNe can produce up to several tens of solar masses of radioactive nickel, resulting in luminous transients similar to some 9 superluminous supernovae (SLSNe). Yet, no unambiguous PISN has been discovered so far. SN 2018ibb is a hydrogen-poor SLSN at z = 0.1661 that evolves extremely slowly commared to the hundreds of known SLSNe. Between mid 2018 and early 2022, we monitored its photometric

Motivation PISN upper/lower limits

Motivation (前回のおさらい) Ni synthesis

Motivation (前回のおさらい) explosion energy

H. Kawashimo et al. arXiv:2306.01682 (2023)

Motivation (秋天文学会のおさらい) Carbon "pre-heating"

- ▲ : start C+C burn, ■: start O+O burn
 Upside: carbon remaining
 Downside: total energy evolution
- Remain more carbon => gain more energy before O+O main burning!

Motivation (秋天文学会のおさらい) "Pre-heating" shifts limit point

- •: start expansion point
- Dashed: PISN failed cases (CC)
- Dashed grey lines: Hepnpn photodisintegration (He 97%-93%)
- "Pre-heating" effect shifts the limit point to the massive side

In this work...

- 3α -> supply ¹²C (CO core total mass)
- ¹²C(α,γ)¹⁶O-> turn ¹²C to ¹⁶O (C/O ratio)

Is 3α rate effective for nickel synthesis?

-> Calculation with both 3α and ${}^{12}C(\alpha,\gamma){}^{16}O$ changed

Results nickel production (3α fixed)

Results total energy (3α fixed)

Results nickel production $({}^{12}C(\alpha,\gamma){}^{16}O \text{ fixed})$

Results total energy $({}^{12}C(\alpha,\gamma){}^{16}O \text{ fixed})$

Discussion -1

Discussion -2

With high ${}^{12}C(\alpha,\gamma){}^{16}O$ rate, all series have same lines.

high ¹²C(α,γ)¹⁶O rate
→ Carbon depression?
→ low "pre-heating"?

However: explodable mass range shift

Summary

Motivation

- PISNは¹²C(α, γ)¹⁶O反応率を振ると爆
 発範囲やニッケル生成量、爆発エネ
 ルギー量に変化
- この原因は炭素「予熱」効果で、
 ¹²C(α,γ)¹⁶O反応率が低いと炭素が多く残るので、PISNの主エネルギーである酸素より先に燃える
- 炭素量を決定するのは¹²C(α,γ)¹⁶Oの みならず、3αも影響。同時に変えた ら?

Result and Discussion

- ¹²C(α,γ)¹⁶Oが変化する場合、おおかた3αによらず同じようなふるまい
- ¹²C(α,γ)¹⁶Oが高いとき、3αを変化させてもほかでみられるようなhierarchicalな構造がない
- 3αが変化しても、系統ごとの最高生 成ニッケル量は影響を受けない

