初代星・初代銀河研究会2023 @ 北海道大学

星団形成における星風の影響

筑波大学 計算科学研究センター Center for Computational Sciences

(筑波大学 計算科学研究センター)

共同研究者: 矢島秀伸 (筑波大学)

窒素が豊富なhigh-z 銀河が見つかりつつある

(e.g., Bunker+23, Cameron+23, Senchyna+23)

[N/O]は球状星団に類似している?

大質量 (≳ 10⁵ M_☉) 古い星団 (≳10 Gyr) 高密度 ($\gtrsim 10^3 M_{\odot} \text{pc}^{-3}$)

球状星団との関連 星質量と化学分布の異なる星質量の割合

星団質量増で、第二世代の星質量割合も増 2Gyr以下の若いものでは第二世代は発見されていない

(Bastian & Lardo 18)

-2.0

2 Tidal disruption event

BH

(Cameron+23, Watanabe+23)

 $M_{*} > 1000 \ M_{\odot}$ (Charbonnel+23)

Wolf-Rayet星からの星風による効果を考慮する。

(2) Tidal disruption event (3) \ddagger

(Cameron+23, Watanabe+23)

BH

 $M_* > 1000 M_{\odot}$ (Charbonnel+23)

Walf-Rayet モデル

酸素は超新星爆発により主に供給される。 もしある程度大質量な星(図では > 25 M_{\odot})が超新星爆発を起こさない場合、 N-richな環境となる可能性がある。 (Limongi & Chieffi 2018)

(Watanabe+23)

条件1: 大質量・高密度星団が誕生する

条件2: 星形成継続時間(t_{dur})内にWR星状態となる 条件3: 星形成継続時間(t_{dur})内に超新星爆発が起こらない(?)

雲面密度:
$$\Sigma_{cl} = (雲質量)/(\pi半径^2)$$

 $\Sigma_{cl} > \Sigma_{thr} = 750 M_{\odot} pc^{-2} \left(\frac{\epsilon_{ff}}{0.03}\right)^{2/5} \left(\frac{M_{cl}}{10^6 M_{\odot}}\right)^{-1/5}$
 $\times \left(\frac{T_i}{2.5 \times 10^4 \text{ K}}\right)^{28/25} \left(\frac{s_*}{1.1 \times 10^{47} \text{ M}_{\odot}^{-1} s^{-1}}\right)^2$

M_{cl}: 雲質量, T_i: 電離ガス温度, s_{*}: 電離光子放出率 (HF & Yajima 21, 23)

/5

星風による金属汚染と高密度星団形成

星風による金属汚染と高密度星団形成

Non-Equilibrium chemistry

H, H₂, H⁺, H⁻, H₂⁺, e, CII, OI, OII, OIII, CO

Heating & Cooling

Photoionization & photodissociation heating Direct collapse (> 25 M_{\odot}) Line cooling (CII, CO, OI, OII, OIII), dust cooling 星団粒子を使用 Chemical heating & cooling (Sugimura et al. 2020, CO network: Nelson & Langer 1997)

Radiation transfer with moment method (M1-closure, reduced speed of light)

EUV photons FUV photons (H₂, CO photodissociation) Dust thermal emission

Stellar evolution

Metal yield from SNe & stellar wind (He, N, C, O) Stellar wind & SNe feedback

(Limongi & Chieffi 2018)

(Rosdahl+13, HF&Yajima 21)

(2) 半径: 63 pc(800M_☉pc⁻²)

(3) 半径: 89 pc (400M_☉ pc⁻²)

[N/O] 分布など (2) $\Sigma_{cl} = 800 \ M_{\odot} \text{pc}^{-2}$ (半径: 63 pc)

[N/O] 分布など

[N/O]が高い星も誕生

[N/O]が高い星も誕生, ただし質量割合は小さい...

星風による金属汚染と高密度星団形成

銀河円盤シミュレーションも実施中 ハロー質量: 10⁹ M_☉, 赤方偏移:10, ディスク質量: 7.6 × 10⁷ M_☉, 金属量: 10⁻²Z_☉, NFW profileを仮定

まとめ

Nが豊富なガスを伴う星団形成は、 $10^6 M_{\odot}$ 以上の大質量星団である必要があり そう

ただし、球状星団の第2世代の星と直結するかは不明

今後はよりパラメータを広げた探査と、外的な要因についても考慮したい

